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On the Determination of Box Dimensions 
by Means of Wavelet Transforms 

H. O. Rasmussen 1 

Sufficient conditions are established for the determination of box dimensions of 
graphs from the decrease of the corresponding wavelet transforms. As an 
application, wavelet Weierstrass functions are constructed. 
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Wavelet transforms decompose square-integrable functions in terms of 
translated and scaled versions of an "analyzing wavelet," a square- 
integrable function. The wavelet coefficients used for this decomposition are 
formed by convoluting the original function with translated and scaled 
versions of the analyzing wavelet. Since the analyzing wavelet has zero 
integral, the wavelet coefficients depend only on local averages of 
fluctuations in the function (provided the decay of the analyzing wavelet at 
infinity is sufficiently rapid). It is well known that fluctuations in functions 
are related to the box dimensions of the graphs. (2) But, is it also possible 
to determine these dimensions by means of the wavelet coefficients? 

Such relations are by now well established for measures. (1'3 6,97 The 
problem for continuous functions is still unsolved, but a first step was 
taken in refs. 5 and 6, where the decrease of wavelet transforms was related 
to the H61der continuity of functions. Specifying the H61der continuity, 
however, does not determine the value of box dimensions--it merely 
provides an upper bound (see Proposition 2 below). In the present paper, 
lower bounds on box dimensions are obtained by exploiting the observa- 
tion that a local lower bound on the wavelet transform leads to a lower 
bound on fluctuations in the function in an appropriately chosen interval. 
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The lower bounds thus obtained are equal to the upper bounds, showing 
that the wavelet coefficients determine the box dimension uniquely. 

Box dimensions are easy to compute and are therefore often used to 
characterize scale invariance, though, from a mathematical viewpoint, they 
do have certain unpleasant properties. (2) The following result is often useful 
for determining box dimensions: (2~ 

P r o p o s i t i o n  1. Suppose that IF__ ~2 is intersected by nk 6k-mesh 
cubes with 0h "~ 0 as k -*  0% and 6k+1>~ c6k for 1 > c > 0. Then the box 
dimensions of IF is given by 

D =  lim lognk (1) 
k ~ ~ -- log 6k 

provided the limit exists. 

A function f :  ~ - ,  ~ is H61der continuous (6'8) with exponent ~, where 
0 < ~ ~< 1, if there exists a C > 0 such that 

sup I f ( x ) - f ( y ) l  <~ Ch= (2) 
Ix yl<~h 

for all h > 0. For  bounded functions, this condition holds for all h > 0 if and 
only if it holds for all h > 0 sufficiently small (though generally with a 
different constant). Rather than counting boxes directly, we rely on the 
following result, (2) relating H61der exp6nents to box dimensions: 

P r o p o s i t i o n  2. Let f :  D --* [R be a continuous function, where n is a 
bounded interval. 

(a) If f is H61der continuous with exponent c~ and the box dimension D 
exists, then D ~< 2 - ~. 

(b) Suppose that there are numbers K2 > 0 and 0 ~< ~ ~< 1, and a decreas- 
ing sequence as in Proposition 1, with the following property: for each 
tl ~ l and k ~ N, there exists t2 ~ D such that ]t~ - t2[ ~< 26k and 

I / ( t l ) - f ( t 2 ) l  >~ K26~, (3) 

If the box dimension exists, then D >~ 2 -  e. 

Remark. The box dimension exists if the ~ in Eq. (3) may be chosen 
equal to the H61der exponent. "The use of 26~, rather than 6k, is for later 
convenience." 

Assume that the function to be analyzed is real-valued and bounded. 
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The wavelet transform is then formed by convoluting the function with 
wavelets of constant shape in the following way (see, for instance, ref. 6): 

W(2, r) = ~ f f ( t )  g* dt (4) 
- - o 0  

where r is a real number, 2 is positive, and the complex conjugate of g(t) 
is denoted by g*(t). The wavelet transform is invertible, but this property 
is not used in the present paper. Here, the analyzing wavelet must 
be continuously differentiable and furthermore satisfy the following 
conditions: 

1. There exist C > 0, C' > 0, e > 0, and m > 0 such that 

i g ( t ) l<~C( l+ l t l ) -~  2 and g ' ( t ) i<~C ' ( l+ l t l ) -  ~-2 

2. The following relations hold: 

f + ~ g(t) dt = 0 and tg(t) dt = 0 
o o  o o  

The analyzing wavelet may be complex-valued. 
The problem of determining local H61der exponents by means of 

wavelet transforms was first considered by Holschneider, (5) and the 
results proved in that paper were later extended by Holschneider and 
Tchamitchian. (6) The following result was stated under more restrictive 
conditions in refs. 5 and 6, but the following version is more suitable for 
our purposes and is readily proved by the methods outlined there (this 
theorem, by the way, is a wavelet adaption of a classical result on the 
characterization of H61der continuity). 

Theorem 3. Let the analyzing wavelet satisfy the above conditions 
with m > e, where c~ e ]0, 1 [-. Then the function is H61der continuous with 
exponent ~ if and only if 

W(2, r) = 0(2 ~) (5) 

holds uniformly in r. 

Remark. If Eq. (5) holds uniformly, then the boundedness of the 
function (assumed above) implies that 

[W(2, r)l ~< (22 = (6) 

for some C > 0 and all r E N. 
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It is often difficult to find lower bounds on I f ( t l ) - f ( t2)L for given 
I t 1 -  t21 because these lower bounds generally do not hold at every point. 
A similar problem with lower bounds is encountered in the asymptotic 
behavior of entire functions. In this case the problem is to obtain a lower 
bound on the maximum value of the function on a circle of given radius in 
the complex plane and centered at the origin. This is possible if the inte~gral 
of the function along the circle can be estimated, because then the mean 

b value theorem for integrals can be used: if ~af( t )dt> c, where b >a ,  then 
there is at least one point to e ]a, b[- such that f ( to)> c / (b-  a). This trick 2 
is used to prove the following theorem. 

T h e o r e m  4. Suppose that f :  [a, b] ~ R is square-integrable and 
that the analyzing wavelet g satisfies the above conditions. Let {2k}, 
k = 0, 1 .... , be a decreasing sequence with )ok N 0 as k ~ o% and )-k + 1 ~> C2k 
for some 1 > C > 0 and all k e N. Suppose that there is a collection of points 
{rkt}, a D such that max{ 1, 2 -  m} < D < 2, and c~,/~ > 0 with the following 

properties: 

(a) For  each to s [a, b] and for some choice of k and / ,  

(b) For  all k and l, 

(c) And 

It0 - rktt < ~2~ (7) 

(8) 

I W(2, r)l = O(2 z-D) (9) 

uniformly in r. 

Then the box dimension of the graph exists and is equal to D. 

Ftemarks. The sequence {rkt} may be finite for each fixed k. 

The following proof does not require that r and 2 are continuous 
parameters. Theorem 4, therefore, also holds for discrete wavelet trans- 
forms. Notice that u no longer denotes the HSlder exponent. 

Proof. To use the mean value theorem for integrals, notice first that 

+ 6  

f I f ( t +  t o ) -  f(to)l dt 
6 

- I f ( t + t o ) - f ( t o ) l .  g dt (10) 
~> sup I gl 2 _~ 

2 Littlewood was apparently the first to realize the usefulness of this trick; the example 
mentioned here is part of his first paper, evJ 
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The norm-inequality for integrals gives a lower bound on the right-hand 
side of this inequality, 

sup [gl 2 J ~ I f ( t +  to)-f( to)l"  

+̀ 5 

(12) 

The last step followed by using condition 2, which says that the analyzing 
wavelet has zero integral. Suppose first that t o = rkt for some choice of k 
and /. The last expression in (12) can then be evaluated by using the 
H61der continuity o f f ( t )  and the decay at infinity of the analyzing wavelet. 
A bound for the last integral in Eq. (12) can be found by using Theorem 3 
and Eq. (9), which together imply that 2 - D  is a H61der exponent for the 
function f(t),  and condition 1, which determines the decay at infinity for 
the analyzing wavelet. Notice first that 

-1. f~~ It[ 2 D g * ( t )  d t~  K )Lm+lol n--m (13) 
, t J a  \ z j  m - 2 + D  

for some constant K > 0 .  To use this upper bound on the last integral in 
Eq. (12), the wavelet transform I W(2, to)l in Eq. 12 must be sufficiently 
large; this happens when to = rkt. It therefore follows that 

+,5 2 
f [f(t+rkt)--f(rkt)[ dt>~ -`5 Su--p-Tg-[ I I W(2, rk,)l - C21+m6'-D m I (14) 

for some constant C > 0 .  To evaluate the right-hand side in Eq. (14), let 
6=6,=2koch. The lower bound on the wavelet transform in Eq. (8) then 
implies that 

_ c ~ l + m , v  o - m  I 2 h ~ - 2 _  - m h - m  I 2 - o  (15) 

provided h is sufficiently large; notice that h may be chosen independently 
of k and l. By combining Eqs. (14) and (15), and then using the mean value 
theorem for integrals, it follows that there is a t 1 ~ ]rkl--C~k; rkl + C~k[ such 
that 

1 
[f(t l  +rkt)-- f(rkl)[ > [fl ~D-2hD-2-C~ "l 62-~ (16) . 

lah sup [g[ 
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For given toe [a, b] and k e  N, it follows from Eq. (7) that there is an 
rkte [a, b] such that It o -  r~l I < 6k/h, implying that it 0 - t l l  < 26k, provided 
h ~> 1. Choose now a t I e ]rk~-6k; rkt+ 6kl- such that Eq. (16) holds. For 
either t2 = rkt o r  t 2 = t l ,  it follows that 

1 If(to)--f(tz)l>~2~hsuplgl[fl~D 2hD 2--Co~ 1-mh-1 m162--O (17) 

and I to- te[  <26k. This implies that condition (b) of Proposition2 is 
satisfied and therefore that the box dimension is larger than or equal 
to D. Condition (a) of Proposition 2 is satisfied because the function is 
H61der continuous with exponent 2 - D ,  as remarked above, and the box 
dimension therefore exists and is equal to D. | 

The above theorem leads to a generalization of the classical 
Weierstrass functions (see, for instance, ref. 2). Weierstrass (1~ introduced 
these functions as examples of continuous functions that are nowhere 
differentiable, but nowadays they are mainly used as examples of functions 
that have "fractal" graphs. (2) To generalize such functions to bases that 
consist of wavelets rather than sine waves, let 

~ij(t) = 2J/2 ~ ( 2 J t -  i) 

where i, j e Y ,  be an orthonormal basis for L2(~) (for the construction of 
such bases, see ref. 8). Then any square-integrable function can be written 
in the form 

f(t) = ~ a~p~(t) 
ij  

where the coefficients a 0 are the inner products between f(t) and the 
functions in the basis. Suppose now that ~(t) has compact support and 
that the aij vanish whenever the product 2 Ji is sufficiently large. The 
function f ( t )  then has compact support; say in [a, b]. Let {ni}iE~ be an 
unbounded sequence of integers such that 

F/i+ 1 ~F/ i  

Ini-ni+ll <~ 

for some 7 > 0  and all i e N .  For each toe [a,b], it is then possible to 
choose i and j such that 

Ito--2-Jni[ <. 12 Jni+l--2-Jni[ <~2 -ir 

This shows that condition (a) in Theorem 4 is satisfied. If there also exist 
positive constants M 1 and M2 such that 

M1 ~<2 (2 D)J+J/2la~,jl <~M2 (18) 
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then the graph of 

f ( t )  = ~ ~nij(t) (19) 
niJ 

has box dimensional equal to D. This function may be described as a 
lacunary wavelet series. Results in ref. 8 then show that the function 
in Eq. (19) is continuous and nondifferentiable at every point. Notice that 
the nondifferentiability and the dimension remain unchanged when f ( t )  is 
extended to a function of the form 

f ( t )  = ~ ak,~kkt(t) 
kl 

where a o satisfies the inequalities in (18) whenever k = n  i for some i~ r~, 
and at least the second inequality for all other k ~ r~. 
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